Telegram Open Network Virtual Machine

Nikolai Durov, Everscale Team

April 2, 2024

Abstract

The aim of this text is to provide a description of the Telegram
Open Network Virtual Machine (TON VM or TVM), used to execute
smart contracts in the TON Blockchain.

Introduction

The primary purpose of the Telegram Open Network Virtual Machine (TON

VM or TVM) is to execute smart-contract code in the TON Blockchain.

TVM must support all operations required to parse incoming messages and

persistent data, and to create new messages and modify persistent data.
Additionally, TVM must meet the following requirements:

e [t must provide for possible future extensions and improvements while
retaining backward compatibility and interoperability, because the code
of a smart contract, once committed into the blockchain, must continue
working in a predictable manner regardless of any future modifications

to the VM.

e It must strive to attain high “(virtual) machine code” density, so that
the code of a typical smart contract occupies as little persistent block-
chain storage as possible.

e [t must be completely deterministic. In other words, each run of the
same code with the same input data must produce the same result,

Introduction

regardless of specific software and hardware used[]

The design of TVM is guided by these requirements. While this document
describes a preliminary and experimental version of TVMH the backward
compatibility mechanisms built into the system allow us to be relatively
unconcerned with the efficiency of the operation encoding used for TVM
code in this preliminary version.

TVM is not intended to be implemented in hardware (e.g., in a specialized
microprocessor chip); rather, it should be implemented in software running
on conventional hardware. This consideration lets us incorporate some high-
level concepts and operations in TVM that would require convoluted mi-
crocode in a hardware implementation but pose no significant problems for a
software implementation. Such operations are useful for achieving high code
density and minimizing the byte (or storage cell) profile of smart-contract
code when deployed in the TON Blockchain.

For example, there are no floating-point arithmetic operations (which could be effi-
ciently implemented using hardware-supported double type on most modern CPUs) present
in TVM, because the result of performing such operations is dependent on the specific un-
derlying hardware implementation and rounding mode settings. Instead, TVM supports
special integer arithmetic operations, which can be used to simulate fixed-point arithmetic
if needed.

2The production version will likely require some tweaks and modifications prior to
launch, which will become apparent only after using the experimental version in the test
environment for some time.

Introduction

Contents

1 Overview|
(1.0 Notation for bitstrings|
(.1 TVMis a stack machinel
(1.2 Categories of TVM instructions|
(1.3 Control registers|
(1.4 Total state of TVM (SCCCG)|
(1.5 Integer arithmetic/.

2 The stackl
[2.1 Stack calling conventions|
[2.2 Stack manipulation primitives| L.
2.3 Efhiciency of stack manipulation primitives|

[3 Cells, memory, and persistent storage]

[3.2 Data manipulation instructions and cells|
[3.3 Hashmaps, or dictionaries|
[3.4 Hashmaps with variable-length keys|.

[4 Control flow, continuations, and exceptions|
4.1 Continuations and subroutines
4.2 Control flow primitives: conditional and iterated execution| . .
4.3 Operations with continuations|
4.4 Continuations as objects|
4.5 Exception handling|,
4.6 Functions, recursion, and dictionaries|

[6 Codepages and instruction encoding|
[b.1 Codepages and interoperability of different T'VM versions|. . .
[>.2 Instruction encoding| oL
[>.3 Instruction encoding in codepage zero|.

[A Instructions and opcodes|
[A.1 Gas prices|
[A.2 Stack manipulation primitives|
[A.3 Tuple, List, and Null primitives|
[A.4 Constant, or literal primitives|

16
16
21
25

28
28
32
37
47

49
49
53
95
o7
o8
61

67
67
70
73

Introduction

[A.5 Arithmetic primitives|o
[A.6 Comparison primitives|
[A.7 Cell primitives|.
[A.8 Continuation and control flow primitives|
[A.9 Exception generating and handling primitives|
[A.10 Dictionary manipulation primitives|
[A.11 Application-specific primitives|
[A.12 Debug primitives|
[A.13 Codepage primitives|

Formal properties and specifications of TVM]
B.1 Serialization of the TVM statel
[B.2 Step tunction of TVM|

[C

Code density of stack and register machines|

(C.1 Sample leaf function|
[C.2 Comparison of machine code for sample leaf function|
(C.3 Sample non-leat function| L.
|C.4 Comparison of machine code for sample non-leat function| . .

145
145
147

150
150
157
163

. 173

1.0. NOTATION FOR BITSTRINGS

1 Overview

This chapter provides an overview of the main features and design principles
of TVM. More detail on each topic is provided in subsequent chapters.

1.0 Notation for bitstrings

The following notation is used for bit strings (or bitstrings)—i.e., finite strings
consisting of binary digits (bits), 0 and 1—throughout this document.

1.0.1. Hexadecimal notation for bitstrings. When the length of a bit-
string is a multiple of four, we subdivide it into groups of four bits and
represent each group by one of sixteen hexadecimal digits 0-9, A-F in the
usual manner: 015 <> 0000, 1,4 <> 0001, ..., Fig <> 1111. The resulting
hexadecimal string is our equivalent representation for the original binary
string.

1.0.2. Bitstrings of lengths not divisible by four. If the length of a
binary string is not divisible by four, we augment it by one 1 and several
(maybe zero) Os at the end, so that its length becomes divisible by four, and
then transform it into a string of hexadecimal digits as described above. To
indicate that such a transformation has taken place, a special “completion
tag” _is added to the end of the hexadecimal string. The reverse transforma-
tion (applied if the completion tag is present) consists in first replacing each
hexadecimal digit by four corresponding bits, and then removing all trailing
zeroes (if any) and the last 1 immediately preceding them (if the resulting
bitstring is non-empty at this point).

Notice that there are several admissible hexadecimal representations for
the same bitstring. Among them, the shortest one is “canonical”. It can be
deterministically obtained by the above procedure.

For example, 8A corresponds to binary string 10001010, while 8A_ and
8A0_ both correspond to 100010. An empty bitstring may be represented by
either 7, ‘8_7, ‘0_’", *_’, or ‘00_".

1.0.3. Emphasizing that a string is a hexadecimal representation of
a bitstring. Sometimes we need to emphasize that a string of hexadecimal
digits (with or without a _ at the end) is the hexadecimal representation of
a bitstring. In such cases, we either prepend x to the resulting string (e.g.,
x84), or prepend x{ and append } (e.g., x{2D9_3}, which is 00101101100).

1.1. TVM 1S A STACK MACHINE

This should not be confused with hexadecimal numbers, usually prepended
by 0x (e.g., 0x2D9 or 0x2d9, which is the integer 729).

1.0.4. Serializing a bitstring into a sequence of octets. When a bit-
string needs to be represented as a sequence of 8-bit bytes (octets), which
take values in integers 0. .. 255, this is achieved essentially in the same fash-
ion as above: we split the bitstring into groups of eight bits and interpret
each group as the binary representation of an integer 0...255. If the length
of the bitstring is not a multiple of eight, the bitstring is augmented by a
binary 1 and up to seven binary Os before being split into groups. The fact
that such a completion has been applied is usually reflected by a “completion
tag” bit.

For instance, 00101101100 corresponds to the sequence of two octets
(0x2d, 0x90) (hexadecimal), or (45,144) (decimal), along with a completion
tag bit equal to 1 (meaning that the completion has been applied), which
must be stored separately.

In some cases, it is more convenient to assume the completion is enabled
by default rather than store an additional completion tag bit separately.
Under such conventions, 8n-bit strings are represented by n + 1 octets, with
the last octet always equal to 0x80 = 128.

1.1 TVM is a stack machine

First of all, TVM is a stack machine. This means that, instead of keeping
values in some “variables” or “general-purpose registers”, they are kept in a
(LIFO) stack, at least from the “low-level” (TVM) perspective[]

Most operations and user-defined functions take their arguments from the
top of the stack, and replace them with their result. For example, the inte-
ger addition primitive (built-in operation) ADD does not take any arguments
describing which registers or immediate values should be added together and
where the result should be stored. Instead, the two top values are taken from
the stack, they are added together, and their sum is pushed into the stack in
their place.

3A high-level smart-contract language might create a visibility of variables for the
ease of programming; however, the high-level source code working with variables will be
translated into TVM machine code keeping all the values of these variables in the TVM
stack.

1.1. TVM 1S A STACK MACHINE

1.1.1. TVM values. The entities that can be stored in the TVM stack
will be called TVM walues, or simply values for brevity. They belong to
one of several predefined walue types. Each value belongs to exactly one
value type. The values are always kept on the stack along with tags uniquely
determining their types, and all built-in TVM operations (or primitives) only
accept values of predefined types.

For example, the integer addition primitive ADD accepts only two integer
values, and returns one integer value as a result. One cannot supply ADD with
two strings instead of two integers expecting it to concatenate these strings
or to implicitly transform the strings into their decimal integer values; any
attempt to do so will result in a run-time type-checking exception.

1.1.2. Static typing, dynamic typing, and run-time type checking.
In some respects TVM performs a kind of dynamic typing using run-time type
checking. However, this does not make the TVM code a “dynamically typed
language” like PHP or Javascript, because all primitives accept values and
return results of predefined (value) types, each value belongs to strictly one
type, and values are never implicitly converted from one type to another.
If, on the other hand, one compares the TVM code to the conventional
microprocessor machine code, one sees that the TVM mechanism of value
tagging prevents, for example, using the address of a string as a number—
or, potentially even more disastrously, using a number as the address of
a string—thus eliminating the possibility of all sorts of bugs and security
vulnerabilities related to invalid memory accesses, usually leading to memory
corruption and segmentation faults. This property is highly desirable for
a VM used to execute smart contracts in a blockchain. In this respect,
TVM’s insistence on tagging all values with their appropriate types, instead
of reinterpreting the bit sequence in a register depending on the needs of the
operation it is used in, is just an additional run-time type-safety mechanism.

An alternative would be to somehow analyze the smart-contract code for
type correctness and type safety before allowing its execution in the VM,
or even before allowing it to be uploaded into the blockchain as the code
of a smart contract. Such a static analysis of code for a Turing-complete
machine appears to be a time-consuming and non-trivial problem (likely to
be equivalent to the stopping problem for Turing machines), something we
would rather avoid in a blockchain smart-contract context.

One should bear in mind that one always can implement compilers from
statically typed high-level smart-contract languages into the TVM code (and

1.1. TVM 1S A STACK MACHINE

we do expect that most smart contracts for TON will be written in such lan-
guages), just as one can compile statically typed languages into conventional
machine code (e.g., x86 architecture). If the compiler works correctly, the
resulting machine code will never generate any run-time type-checking ex-
ceptions. All type tags attached to values processed by TVM will always
have expected values and may be safely ignored during the analysis of the
resulting TVM code, apart from the fact that the run-time generation and
verification of these type tags by TVM will slightly slow down the execution
of the TVM code.

1.1.3. Preliminary list of value types. A preliminary list of value types
supported by TVM is as follows:

e [nteger — Signed 257-bit integers, representing integer numbers in the
range —2256 226 _ 1 as well as a special “not-a-number” value NaN.

o Cell — A TVM cell consists of at most 1023 bits of data, and of at
most four references to other cells. All persistent data (including TVM
code) in the TON Blockchain is represented as a collection of TVM
cells (cf. [I}, 2.5.14]).

e Tuple — An ordered collection of up to 255 components, having ar-
bitrary value types, possibly distinct. May be used to represent non-
persistent values of arbitrary algebraic data types.

o Null — A type with exactly one value L, used for representing empty
lists, empty branches of binary trees, absence of return value in some
situations, and so on.

o Slice — A TVM cell slice, or slice for short, is a contiguous “sub-cell”
of an existing cell, containing some of its bits of data and some of its
references. Essentially, a slice is a read-only view for a subcell of a cell.
Slices are used for unpacking data previously stored (or serialized) in a
cell or a tree of cells.

e Builder — A TVM cell builder, or builder for short, is an “incomplete”
cell that supports fast operations of appending bitstrings and cell ref-
erences at its end. Builders are used for packing (or serializing) data
from the top of the stack into new cells (e.g., before transferring them
to persistent storage).

1.2. CATEGORIES OF TVM INSTRUCTIONS

e Continuation — Represents an “execution token” for TVM, which may
be invoked (executed) later. As such, it generalizes function addresses
(i.e., function pointers and references), subroutine return addresses,
instruction pointer addresses, exception handler addresses, closures,
partial applications, anonymous functions, and so on.

This list of value types is incomplete and may be extended in future revisions
of TVM without breaking the old TVM code, due mostly to the fact that
all originally defined primitives accept only values of types known to them
and will fail (generate a type-checking exception) if invoked on values of new
types. Furthermore, existing value types themselves can also be extended in
the future: for example, 257-bit Integer might become 513-bit LonglInteger,
with originally defined arithmetic primitives failing if either of the arguments
or the result does not fit into the original subtype Integer. Backward com-
patibility with respect to the introduction of new value types and extension
of existing value types will be discussed in more detail later (cf. .

1.2 Categories of TVM instructions

TVM instructions, also called primitives and sometimes (built-in) operations,
are the smallest operations atomically performed by TVM that can be present
in the TVM code. They fall into several categories, depending on the types
of values (cf. they work on. The most important of these categories
are:

e Stack (manipulation) primitives — Rearrange data in the TVM stack,
so that the other primitives and user-defined functions can later be
called with correct arguments. Unlike most other primitives, they are
polymorphic, i.e., work with values of arbitrary types.

o Tuple (manipulation) primitives — Construct, modify, and decompose
Tuples. Similarly to the stack primitives, they are polymorphic.

e (Constant or literal primitives — Push into the stack some “constant”
or “literal” values embedded into the TVM code itself, thus providing
arguments to the other primitives. They are somewhat similar to stack
primitives, but are less generic because they work with values of specific

types.

1.3. CONTROL REGISTERS

o Arithmetic primitives — Perform the usual integer arithmetic opera-
tions on values of type Integer.

o Cell (manipulation) primitives — Create new cells and store data in
them (cell creation primitives) or read data from previously created
cells (cell parsing primitives). Because all memory and persistent stor-
age of TVM consists of cells, these cell manipulation primitives actually
correspond to “memory access instructions” of other architectures. Cell
creation primitives usually work with values of type Builder, while cell
parsing primitives work with Slices.

e Continuation and control flow primitives — Create and modify Con-
tinuations, as well as execute existing Continuations in different ways,
including conditional and repeated execution.

e Custom or application-specific primitives — Efficiently perform spe-
cific high-level actions required by the application (in our case, the
TON Blockchain), such as computing hash functions, performing ellip-
tic curve cryptography, sending new blockchain messages, creating new
smart contracts, and so on. These primitives correspond to standard
library functions rather than microprocessor instructions.

1.3 Control registers

While TVM is a stack machine, some rarely changed values needed in almost
all functions are better passed in certain special registers, and not near the top
of the stack. Otherwise, a prohibitive number of stack reordering operations
would be required to manage all these values.

To this end, the TVM model includes, apart from the stack, up to 16
special control registers, denoted by c0 to c15, or ¢(0) to c(15). The original
version of TVM makes use of only some of these registers; the rest may be
supported later.

1.3.1. Values kept in control registers. The values kept in control regis-
ters are of the same types as those kept on the stack. However, some control
registers accept only values of specific types, and any attempt to load a value
of a different type will lead to an exception.

1.3.2. List of control registers. The original version of TVM defines and
uses the following control registers:

10

1.4. ToTAL STATE OF TVM (SCCCQG)

c0 — Contains the nezt continuation or return continuation (similar
to the subroutine return address in conventional designs). This value
must be a Continuation.

cl — Contains the alternative (return) continuation; this value must
be a Continuation. It is used in some (experimental) control flow
primitives, allowing TVM to define and call “subroutines with two exit
points”.

c2 — Contains the exception handler. This value is a Continuation,
invoked whenever an exception is triggered.

c3 — Contains the current dictionary, essentially a hashmap containing
the code of all functions used in the program. For reasons explained
later in this value is also a Continuation, not a Cell as one might
expect.

c4 — Contains the root of persistent data, or simply the data. This
value is a Cell. When the code of a smart contract is invoked, c4
points to the root cell of its persistent data kept in the blockchain
state. If the smart contract needs to modify this data, it changes c4
before returning.

c5 — Contains the output actions. It is also a Cell initialized by a
reference to an empty cell, but its final value is considered one of the
smart contract outputs. For instance, the SENDMSG primitive, specific
for the TON Blockchain, simply inserts the message into a list stored
in the output actions.

c7 — Contains the root of temporary data. It is a Tuple, initialized by
a reference to an empty Tuple before invoking the smart contract and
discarded after its termination [

More control registers may be defined in the future for specific TON Block-
chain or high-level programming language purposes, if necessary.

4In the TON Blockchain context, c7 is initialized with a singleton Tuple, the only
component of which is a Tuple containing blockchain-specific data. The smart contract is
free to modify c7 to store its temporary data provided the first component of this Tuple
remains intact.

11

1.5. INTEGER ARITHMETIC

1.4

Total state of TVM (SCCCG)

The total state of TVM consists of the following components:

Stack (cf. |1.1)) — Contains zero or more values (cf. , each be-
longing to one of value types listed in [1.1.3]

Control registers c0—c15 — Contain some specific values as described
in(1.3.2, (Only seven control registers are used in the current version.)

Current continuation cc — Contains the current continuation (i.e., the
code that would be normally executed after the current primitive is
completed). This component is similar to the instruction pointer reg-
ister (ip) in other architectures.

Current codepage cp — A special signed 16-bit integer value that selects
the way the next TVM opcode will be decoded. For example, future
versions of TVM might use different codepages to add new opcodes
while preserving backward compatibility.

Gas limits gas — Contains four signed 64-bit integers: the current gas
limit ¢;, the maximal gas limit g,,, the remaining gas ¢,, and the gas
credit g.. Always 0 < ¢; < g, 9. > 0, and g, < g; + g¢; g. is usually
initialized by zero, g, is initialized by ¢; + ¢g. and gradually decreases
as the TVM runs. When g, becomes negative or if the final value of g,
is less than g., an out of gas exception is triggered.

Notice that there is no “return stack” containing the return addresses of all
previously called but unfinished functions. Instead, only control register cO
is used. The reason for this will be explained later in 4.1.9|

Also notice that there are no general-purpose registers, because TVM
is a stack machine (cf. [L.1). So the above list, which can be summarized
as “stack, control, continuation, codepage, and gas” (SCCCG), similarly to
the classical SECD machine state (“stack, environment, control, dump”), is
indeed the total state of TVMF

5Strictly speaking, there is also the current library context, which consists of a dictionary
with 256-bit keys and cell values, used to load library reference cells of

12

1.5. INTEGER ARITHMETIC

1.5 Integer arithmetic

All arithmetic primitives of TVM operate on several arguments of type In-
teger, taken from the top of the stack, and return their results, of the same
type, into the stack. Recall that Integer represents all integer values in the
range —22°0 < < 2256 and additionally contains a special value NaN (“not-
a-number”).

If one of the results does not fit into the supported range of integers—
or if one of the arguments is a NaN—then this result or all of the results
are replaced by a NaN, and (by default) an integer overflow exception is
generated. However, special “quiet” versions of arithmetic operations will
simply produce NalNs and keep going. If these NaNs end up being used in a
“non-quiet” arithmetic operation, or in a non-arithmetic operation, an integer
overflow exception will occur.

1.5.1. Absence of automatic conversion of integers. Notice that TVM
Integers are “mathematical” integers, and not 257-bit strings interpreted dif-
ferently depending on the primitive used, as is common for other machine
code designs. For example, TVM has only one multiplication primitive MUL,
rather than two (MUL for unsigned multiplication and IMUL for signed multi-
plication) as occurs, for example, in the popular x86 architecture.

1.5.2. Automatic overflow checks. Notice that all TVM arithmetic prim-
itives perform overflow checks of the results. If a result does not fit into the
Integer type, it is replaced by a NaN, and (usually) an exception occurs. In
particular, the result is not automatically reduced modulo 22°¢ or 227, as is
common for most hardware machine code architectures.

1.5.3. Custom overflow checks. In addition to automatic overflow checks,
TVM includes custom overflow checks, performed by primitives FITS n and
UFITS n, where 1 < n < 256. These primitives check whether the value on
(the top of) the stack is an integer = in the range —2"! < 2 < 2" ! or
0 <z < 2", respectively, and replace the value with a NaN and (optionally)
generate an integer overflow exception if this is not the case. This greatly
simplifies the implementation of arbitrary n-bit integer types, signed or un-
signed: the programmer or the compiler must insert appropriate FITS or
UFITS primitives either after each arithmetic operation (which is more rea-
sonable, but requires more checks) or before storing computed values and
returning them from functions. This is important for smart contracts, where

13

1.5. INTEGER ARITHMETIC

unexpected integer overflows happen to be among the most common source
of bugs.

1.5.4. Reduction modulo 2". TVM also has a primitive MODPOW2 n, which
reduces the integer at the top of the stack modulo 2", with the result ranging
from 0 to 2™ — 1.

1.5.5. Integer is 257-bit, not 256-bit. One can understand now why
TVM’s Integer is (signed) 257-bit, not 256-bit. The reason is that it is the
smallest integer type containing both signed 256-bit integers and unsigned

256-bit integers, which does not require automatic reinterpreting of the same
256-bit string depending on the operation used (cf. [1.5.1]).

1.5.6. Division and rounding. The most important division primitives
are DIV, MOD, and DIVMOD. All of them take two numbers from the stack, x
and y (y is taken from the top of the stack, and x is originally under it),
compute the quotient ¢ and remainder r of the division of z by y (i.e., two
integers such that x = yqg + r and |r| < |y|), and return either ¢, r, or both
of them. If y is zero, then all of the expected results are replaced by NaNs,
and (usually) an integer overflow exception is generated.

The implementation of division in TVM somewhat differs from most
other implementations with regards to rounding. By default, these prim-
itives round to —oo, meaning that ¢ = |z/y|, and r has the same sign
as y. (Most conventional implementations of division use “rounding to zero”
instead, meaning that r has the same sign as x.) Apart from this “floor
rounding”, two other rounding modes are available, called “ceiling rounding”
(with ¢ = [z/y], and r and y having opposite signs) and “nearest round-
ing” (with ¢ = |x/y + 1/2| and |r| < |y|/2). These rounding modes are
selected by using other division primitives, with letters C and R appended
to their mnemonics. For example, DIVMODR computes both the quotient and
the remainder using rounding to the nearest integer.

1.5.7. Combined multiply-divide, multiply-shift, and shift-divide
operations. To simplify implementation of fixed-point arithmetic, TVM
supports combined multiply-divide, multiply-shift, and shift-divide opera-
tions with double-length (i.e., 514-bit) intermediate product. For example,
MULDIVMODR takes three integer arguments from the stack, a, b, and ¢, first
computes ab using a 514-bit intermediate result, and then divides ab by ¢
using rounding to the nearest integer. If ¢ is zero or if the quotient does not

14

1.5. INTEGER ARITHMETIC

fit into Integer, either two NaNs are returned, or an integer overflow exception
is generated, depending on whether a quiet version of the operation has been
used. Otherwise, both the quotient and the remainder are pushed into the
stack.

15

2.1. STACK CALLING CONVENTIONS

2 The stack

This chapter contains a general discussion and comparison of register and
stack machines, expanded further in Appendix [C| and describes the two
main classes of stack manipulation primitives employed by TVM: the basic
and the compound stack manipulation primitives. An informal explanation of
their sufficiency for all stack reordering required for correctly invoking other
primitives and user-defined functions is also provided. Finally, the problem
of efficiently implementing TVM stack manipulation primitives is discussed

in 2.3l

2.1 Stack calling conventions

A stack machine, such as TVM, uses the stack—and especially the values
near the top of the stack—to pass arguments to called functions and primi-
tives (such as built-in arithmetic operations) and receive their results. This
section discusses the TVM stack calling conventions, introduces some no-
tation, and compares TVM stack calling conventions with those of certain
register machines.

2.1.1. Notation for ‘“stack registers”. Recall that a stack machine, as
opposed to a more conventional register machine, lacks general-purpose reg-
isters. However, one can treat the values near the top of the stack as a kind
of “stack registers”.

We denote by s0 or s(0) the value at the top of the stack, by s1 or s(1)
the value immediately under it, and so on. The total number of values in the
stack is called its depth. If the depth of the stack is n, then s(0), s(1), ...,
s(n — 1) are well-defined, while s(n) and all subsequent s(i) with ¢ > n are
not. Any attempt to use s(i) with ¢ > n should produce a stack underflow
exception.

A compiler, or a human programmer in “T'VM code”, would use these
“stack registers” to hold all declared variables and intermediate values, simi-
larly to the way general-purpose registers are used on a register machine.

2.1.2. Pushing and popping values. When a value x is pushed into a
stack of depth n, it becomes the new s0; at the same time, the old s0 becomes
the new s1, the old s1—the new s2, and so on. The depth of the resulting
stack is n + 1.

16

2.1. STACK CALLING CONVENTIONS

Similarly, when a value x is popped from a stack of depth n > 1, it is the
old value of s0 (i.e., the old value at the top of the stack). After this, it is
removed from the stack, and the old s1 becomes the new s0 (the new value
at the top of the stack), the old s2 becomes the new s1, and so on. The
depth of the resulting stack is n — 1.

If originally n = 0, then the stack is empty, and a value cannot be popped
from it. If a primitive attempts to pop a value from an empty stack, a stack
underflow exception occurs.

2.1.3. Notation for hypothetical general-purpose registers. In order
to compare stack machines with sufficiently general register machines, we will
denote the general-purpose registers of a register machine by r0, r1, and so
on, or by r(0), r(1), ..., r(n — 1), where n is the total number of registers.
When we need a specific value of n, we will use n = 16, corresponding to the
very popular x86-64 architecture.

2.1.4. The top-of-stack register sO vs. the accumulator register r0.
Some register machine architectures require one of the arguments for most
arithmetic and logical operations to reside in a special register called the
accumulator. In our comparison, we will assume that the accumulator is
the general-purpose register r0; otherwise we could simply renumber the
registers. In this respect, the accumulator is somewhat similar to the top-of-
stack “register” s0O of a stack machine, because virtually all operations of a
stack machine both use s0 as one of their arguments and return their result
as s0.

2.1.5. Register calling conventions. When compiled for a register ma-
chine, high-level language functions usually receive their arguments in certain
registers in a predefined order. If there are too many arguments, these func-
tions take the remainder from the stack (yes, a register machine usually has
a stack, too!). Some register calling conventions pass no arguments in regis-
ters at all, however, and only use the stack (for example, the original calling
conventions used in implementations of Pascal and C, although modern im-
plementations of C use some registers as well).

For simplicity, we will assume that up to m < n function arguments are
passed in registers, and that these registers are r0, r1, ..., r(m — 1), in that
order (if some other registers are used, we can simply renumber them)[]

50ur inclusion of r0 here creates a minor conflict with our assumption that the ac-

17

2.1. STACK CALLING CONVENTIONS

2.1.6. Order of function arguments. If a function or primitive requires
m arguments x1, ..., T,,, they are pushed by the caller into the stack in the
same order, starting from x;. Therefore, when the function or primitive is
invoked, its first argument z; is in s(m — 1), its second argument xs is in
s(m — 2), and so on. The last argument z,, is in s0 (i.e., at the top of the
stack). It is the called function or primitive’s responsibility to remove its
arguments from the stack.

In this respect the TVM stack calling conventions—obeyed, at least, by
TMYV primitives—match those of Pascal and Forth, and are the opposite of
those of C (in which the arguments are pushed into the stack in the reverse
order, and are removed by the caller after it regains control, not the callee).

Of course, an implementation of a high-level language for TVM might
choose some other calling conventions for its functions, different from the
default ones. This might be useful for certain functions—for instance, if the
total number of arguments depends on the value of the first argument, as
happens for “variadic functions” such as scanf and printf. In such cases,
the first one or several arguments are better passed near the top of the stack,
not somewhere at some unknown location deep in the stack.

2.1.7. Arguments to arithmetic primitives on register machines.
On a stack machine, built-in arithmetic primitives (such as ADD or DIVMOD)
follow the same calling conventions as user-defined functions. In this respect,
user-defined functions (for example, a function computing the square root of
a number) might be considered as “extensions” or “custom upgrades” of the
stack machine. This is one of the clearest advantages of stack machines
(and of stack programming languages such as Forth) compared to register
machines.

In contrast, arithmetic instructions (built-in operations) on register ma-
chines usually get their parameters from general-purpose registers encoded
in the full opcode. A binary operation, such as SUB, thus requires two argu-
ments, r(i) and r(j), with ¢ and j specified by the instruction. A register
r(k) for storing the result also must be specified. Arithmetic operations can
take several possible forms, depending on whether 7, j, and k are allowed to
take arbitrary values:

e Three-address form — Allows the programmer to arbitrarily choose
not only the two source registers r(i) and r(j), but also a separate

cumulator register, if present, is also r0; for simplicity, we will resolve this problem by
assuming that the first argument to a function is passed in the accumulator.

18

2.1. STACK CALLING CONVENTIONS

destination register r(k). This form is common for most RISC proces-
sors, and for the XMM and AVX SIMD instruction sets in the x86-64
architecture.

e Two-address form — Uses one of the two operand registers (usually
r(i)) to store the result of an operation, so that k = i is never indicated
explicitly. Only ¢ and j are encoded inside the instruction. This is the
most common form of arithmetic operations on register machines, and
is quite popular on microprocessors (including the x86 family).

e One-address form — Always takes one of the arguments from the ac-
cumulator r0, and stores the result in r0O as well; then + = £ = 0, and
only 7 needs to be specified by the instruction. This form is used by
some simpler microprocessors (such as Intel 8080).

Note that this flexibility is available only for built-in operations, but not
for user-defined functions. In this respect, register machines are not as easily
“upgradable” as stack machinesﬂ

2.1.8. Return values of functions. In stack machines such as TVM,
when a function or primitive needs to return a result value, it simply pushes
it into the stack (from which all arguments to the function have already been
removed). Therefore, the caller will be able to access the result value through
the top-of-stack “register” sO.

This is in complete accordance with Forth calling conventions, but dif-
fers slightly from Pascal and C calling conventions, where the accumulator
register r0 is normally used for the return value.

2.1.9. Returning several values. Some functions might want to return

several values vy, ..., yr, with k£ not necessarily equal to one. In these cases,
the k return values are pushed into the stack in their natural order, starting
from ;.

For example, the “divide with remainder” primitive DIVMOD needs to re-
turn two values, the quotient ¢ and the remainder r. Therefore, DIVMOD
pushes ¢ and r into the stack, in that order, so that the quotient is available

"For instance, if one writes a function for extracting square roots, this function will
always accept its argument and return its result in the same registers, in contrast with
a hypothetical built-in square root instruction, which could allow the programmer to
arbitrarily choose the source and destination registers. Therefore, a user-defined function
is tremendously less flexible than a built-in instruction on a register machine.

19

2.1. STACK CALLING CONVENTIONS

thereafter at s1 and the remainder at s0. The net effect of DIVMOD is to
divide the original value of s1 by the original value of s0, and return the
quotient in s1 and the remainder in s0. In this particular case the depth
of the stack and the values of all other “stack registers” remain unchanged,
because DIVMOD takes two arguments and returns two results. In general, the
values of other “stack registers” that lie in the stack below the arguments
passed and the values returned are shifted according to the change of the
depth of the stack.

In principle, some primitives and user-defined functions might return a
variable number of result values. In this respect, the remarks above about
variadic functions (cf. apply: the total number of result values and
their types should be determined by the values near the top of the stack.
(For example, one might push the return values y;, ..., yx, and then push
their total number k as an integer. The caller would then determine the total
number of returned values by inspecting s0.)

In this respect TVM, again, faithfully observes Forth calling conventions.

2.1.10. Stack notation. When a stack of depth n contains values z1, ...,
Zn, in that order, with z; the deepest element and z, the top of the stack,
the contents of the stack are often represented by a list z; 25 ... z,, in that
order. When a primitive transforms the original stack state S’ into a new
state S”, this is often written as S” — S”; this is the so-called stack notation.
For example, the action of the division primitive DIV can be described by S
xy— S |z/y|, where S is any list of values. This is usually abbreviated as x
y — |x/y|, tacitly assuming that all other values deeper in the stack remain
intact.

Alternatively, one can describe DIV as a primitive that runs on a stack S’
of depth n > 2, divides s1 by s0, and returns the floor-rounded quotient as
s0 of the new stack S” of depth n — 1. The new value of s(i) equals the old
value of s(i + 1) for 1 < i < n — 1. These descriptions are equivalent, but
saying that DIV transforms x y into |x/y], or ...x y into ... |z /y], is more
concise.

The stack notation is extensively used throughout Appendix [A] where all
currently defined TVM primitives are listed.

2.1.11. Explicitly defining the number of arguments to a function.
Stack machines usually pass the current stack in its entirety to the invoked
primitive or function. That primitive or function accesses only the several
values near the top of the stack that represent its arguments, and pushes the

20

2.2. STACK MANIPULATION PRIMITIVES

return values in their place, by convention leaving all deeper values intact.
Then the resulting stack, again in its entirety, is returned to the caller.

Most TVM primitives behave in this way, and we expect most user-defined
functions to be implemented under such conventions. However, TVM pro-
vides mechanisms to specify how many arguments must be passed to a called
function (cf. . When these mechanisms are employed, the specified
number of values are moved from the caller’s stack into the (usually initially
empty) stack of the called function, while deeper values remain in the caller’s
stack and are inaccessible to the callee. The caller can also specify how many
return values it expects from the called function.

Such argument-checking mechanisms might be useful, for example, for a
library function that calls user-provided functions passed as arguments to it.

2.2 Stack manipulation primitives

A stack machine, such as TVM, employs a lot of stack manipulation primi-
tives to rearrange arguments to other primitives and user-defined functions,
so that they become located near the top of the stack in correct order. This
section discusses which stack manipulation primitives are necessary and suf-
ficient for achieving this goal, and which of them are used by TVM. Some
examples of code using these primitives can be found in Appendix [C]

2.2.1. Basic stack manipulation primitives. The most important stack
manipulation primitives used by TVM are the following:

o Top-of-stack exchange operation: XCHG sO,s(i) or XCHG s(i) — Ex-
changes values of sO and s(i). When ¢ = 1, operation XCHG s1 is
traditionally denoted by SWAP. When i = 0, this is a NOP (an operation
that does nothing, at least if the stack is non-empty).

o Arbitrary exchange operation: XCHG s(i),s(j) — Exchanges values of
s(i) and s(j). Notice that this operation is not strictly necessary, be-
cause it can be simulated by three top-of-stack exchanges: XCHG s(i);
XCHG s(j); XCHG s(i). However, it is useful to have arbitrary exchanges
as primitives, because they are required quite often.

e Push operation: PUSH s(i) — Pushes a copy of the (old) value of s(i)
into the stack. Traditionally, PUSH sO is also denoted by DUP (it dupli-
cates the value at the top of the stack), and PUSH s1 by OVER.

21

2.2. STACK MANIPULATION PRIMITIVES

e Pop operation: POP s(i) — Removes the top-of-stack value and puts it
into the (new) s(i — 1), or the old s(i). Traditionally, POP s0 is also
denoted by DROP (it simply drops the top-of-stack value), and POP s1
by NIP.

Some other “unsystematic” stack manipulation operations might be also
defined (e.g., ROT, with stack notation @ b ¢ — b ¢ a). While such opera-
tions are defined in stack languages like Forth (where DUP, DROP, OVER, NIP
and SWAP are also present), they are not strictly necessary because the basic
stack manipulation primitives listed above suffice to rearrange stack registers
to allow any arithmetic primitives and user-defined functions to be invoked
correctly.

2.2.2. Basic stack manipulation primitives suffice. A compiler or a
human TVM-code programmer might use the basic stack primitives as fol-
lows.

Suppose that the function or primitive to be invoked is to be passed, say,
three arguments x, y, and z, currently located in stack registers s(i), s(j),
and s(k). In this circumstance, the compiler (or programmer) might issue
operation PUSH s(7) (if a copy of x is needed after the call to this primitive)
or XCHG s(7) (if it will not be needed afterwards) to put the first argument
x into the top of the stack. Then, the compiler (or programmer) could use
either PUSH s(j') or XCHG s(j’), where j' = j or j + 1, to put y into the new
top of the stack

Proceeding in this manner, we see that we can put the original values of
x, y, and z—or their copies, if needed—into locations s2, s1, and s0, using
a sequence of push and exchange operations (cf.|2.2.4] and [2.2.5| for a more
detailed explanation). In order to generate this sequence, the compiler will
need to know only the three values 7, j and k, describing the old locations of
variables or temporary values in question, and some flags describing whether
each value will be needed thereafter or is needed only for this primitive or
function call. The locations of other variables and temporary values will be
affected in the process, but a compiler (or a human programmer) can easily
track their new locations.

80f course, if the second option is used, this will destroy the original arrangement of
x in the top of the stack. In this case, one should either issue a SWAP before XCHG s(j'),
or replace the previous operation XCHG s(i) with XCHG s1, s(i), so that = is exchanged
with s1 from the beginning.

22

2.2. STACK MANIPULATION PRIMITIVES

Similarly, if the results returned from a function need to be discarded
or moved to other stack registers, a suitable sequence of exchange and pop
operations will do the job. In the typical case of one return value in sO,
this is achieved either by an XCHG s(i) or a POP s(i) (in most cases, a DROP)
operation [

Rearranging the result value or values before returning from a function is
essentially the same problem as arranging arguments for a function call, and
is achieved similarly.

2.2.3. Compound stack manipulation primitives. In order to improve
the density of the TVM code and simplify development of compilers, com-
pound stack manipulation primitives may be defined, each combining up to
four exchange and push or exchange and pop basic primitives. Such com-
pound stack operations might include, for example:

e XCHG2 s(i),s(j) — Equivalent to XCHG s1,s(i); XCHG s(j).
e PUSH2 s(i),s(j) — Equivalent to PUSH s(i); PUSH s(j + 1).
e XCPU s(i),s(j) — Equivalent to XCHG s(7); PUSH s(j).

e PUXC s(i),s(j) — Equivalent to PUSH s(i); SWAP; XCHG s(j+1). When
j #iand j # 0, it is also equivalent to XCHG s(j); PUSH s(i); SWAP.

e XCHG3 s(i),s(j),s(k) — Equivalent to XCHG s2,s(i); XCHG s1,s(j);
XCHG s (k).

e PUSH3 s(i),s(j),s(k) — Equivalent to PUSH s(i); PUSH s(j+ 1); PUSH
s(k +2).

Of course, such operations make sense only if they admit a more compact
encoding than the equivalent sequence of basic operations. For example,
if all top-of-stack exchanges, XCHG s1,s(i) exchanges, and push and pop
operations admit one-byte encodings, the only compound stack operations
suggested above that might merit inclusion in the set of stack manipulation
primitives are PUXC, XCHG3, and PUSH3.

9Notice that the most common XCHG s(i) operation is not really required here if we
do not insist on keeping the same temporary value or variable always in the same stack
location, but rather keep track of its subsequent locations. We will move it to some other
location while preparing the arguments to the next primitive or function call.

23

2.2. STACK MANIPULATION PRIMITIVES

These compound stack operations essentially augment other primitives
(instructions) in the code with the “true” locations of their operands, some-
what similarly to what happens with two-address or three-address register
machine code. However, instead of encoding these locations inside the op-
code of the arithmetic or another instruction, as is customary for register
machines, we indicate these locations in a preceding compound stack ma-
nipulation operation. As already described in [2.1.7] the advantage of such
an approach is that user-defined functions (or rarely used specific primitives
added in a future version of TVM) can benefit from it as well (cf. for a

more detailed discussion with examples).

2.2.4. Mnemonics of compound stack operations. The mnemonics
of compound stack operations, some examples of which have been provided
in are created as follows.

The v > 2 formal arguments s(é1), ..., s(i,) to such an operation O
represent the values in the original stack that will end up in s(y — 1), ...,
sO after the execution of this compound operation, at least if all i,, 1 <
v < 7, are dis